«Рассмотрено»

«Утверждено»

на заседании педагогического совета

приказом № 354-ш от 31.08.2019

№1 от30.08.2019

Приложение

к ООП СОО МОУ «Гимназия»

г. Сертолово на 2015-2021 г.

Рабочая программа по учебному курсу «Решение биологических задач»

10 класс

Планируемые результаты освоения учебного курса «Решение биологических задач» 10 класс

Учащиеся 10 класса должны знать:

- положения биологических теорий (клеточная основные теория; хромосомная теория наследственности; теория гена; синтетическая теория эволюции, теория антропогенеза); законов (расщепления Г. независимого наследования Г. Менделя; Менделя; сцепленного наследования Т. Моргана; гомологических рядов в наследственной изменчивости; зародышевого сходства; биогенетический); (доминирования Г. Менделя; экологической пирамиды); (чистоты гамет, сущности и происхождения жизни, происхождения человека); закономерностей (изменчивости; сцепленного наследования; наследования, сцепленного с полом; взаимодействия генов и их цитологические основы); учений (о путях и направлениях эволюции; Н.И. Вавилова о центрах многообразия и происхождения культурных растений; В.И. Вернадского о биосфере и ноосфере);
- особенности биологических процессов и явлений: обмен веществ и превращения энергии В клетке; фотосинтез; пластический энергетический обмен; брожение; хемосинтез; митоз; мейоз; развитие гамет у растений и животных; размножение; оплодотворение у растений индивидуальное развитие организма животных; получение гетерозиса, полиплоидов, отдаленных гибридов; действие искусственного, стабилизирующего движущего И географическое экологическое видообразование; формирование И приспособленности К среде обитания; круговорот веществ превращение энергии в экосистемах и биосфере; эволюция биосферы;
- особенности строения биологических объектов: клетки (химический состав и строение); генов, хромосом, женских и мужских гамет, клеток прокариот и эукариот; вирусов; одноклеточных и многоклеточных организмов; вида и экосистем (структура);
- причины эволюции, изменяемости видов наследственных заболеваний, мутаций; устойчивости, саморегуляции, саморазвития и смены экосистем.

Уметь (владеть способами деятельности):

• объяснять: роль биологии в формировании современной естественнонаучной картины мира, в практической деятельности людей и самого ученика; родство, общность происхождения и эволюцию растений и животных (на примере сопоставления отдельных групп); роль различных организмов в жизни человека и собственной деятельности; взаимосвязи организмов и окружающей среды; биологического разнообразия в сохранении биосферы; необходимость защиты окружающей среды; родство человека с

млекопитающими животными, место и роль человека в природе; взаимосвязи человека и окружающей среды; зависимость собственного здоровья от состояния окружающей среды; причины наследственности и изменчивости, проявления наследственных заболеваний, иммунитета у человека; роль гормонов и витаминов в организме;

- изучать биологические объекты и процессы: ставить биологические эксперименты, описывать и объяснять результаты опытов; наблюдать за ростом и развитием растений и животных, поведением животных; рассматривать на готовых микропрепаратах и описывать биологические объекты;
- распознавать и описывать: на таблицах основные части и органоиды клетки, органы и системы органов человека; наиболее распространенные растения и животных своей местности, культурные растения и домашних животных, съедобные и ядовитые грибы, опасные для человека растения и животные;
- сравнивать биологические объекты (клетки, ткани, органы и системы органов, организмы, представителей отдельных систематических групп) и делать выводы на основе сравнения;
- определять принадлежность биологических объектов к определенной систематической группе (классификация);
- анализировать и оценивать воздействие факторов окружающей среды, факторов риска на здоровье, последствий деятельности человека в экосистемах, влияние собственных поступков на живые организмы и экосистемы;
- проводить самостоятельный поиск биологической информации: находить в тексте учебника отличительные признаки основных систематических групп; в биологических словарях и справочниках значения биологических терминов; в различных источниках необходимую информацию о живых организмах (в том числе с использованием информационных технологий);

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни (быть компетентным в области рационального природопользования, защиты окружающей среды и сохранения собственного здоровья):

- соблюдать и обосновывать правила поведения в окружающей среде и обеспечения безопасности собственной жизнедеятельности в чрезвычайных ситуациях природного и техногенного характера, меры профилактики распространения вирусных (в том числе ВИЧ-инфекции) и других заболеваний;
- оказывать первую помощь при обморожениях, ожогах, травмах; поражении электрическим током, молнией; спасении утопающего;

оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение Умение работать с разными источниками биологической информации: тексте учебника, научно-популярной литературе, биологических словарях и справочниках; анализировать и оценивать информацию;

Содержание курса.

Введение. 2 часа.

Ресурсы учебного успеха: обученность, мотивация, память, внимание, модальность, мышление, деятельность. Контроль, самоконтроль.

Решение задач по теме «Основные свойства живого. Системная организация жизни». Биология - наука о жизни и ее закономерностях. Предмет, задачи, методы и значение биологии. Основные признаки живого. Определение понятия «жизнь». Уровни организации живой материи и принципы их выделения.

Раздел 1. Молекулярная биология. 3 часа

Решение задач по теме: «Молекулярная биология».

Химический состав клетки. Неорганические веществ. Неорганические вещества и их роль в жизнедеятельности клетки. Вода в клетке, взаимосвязь ее строения, химических свойств и биологической роли. Осмотическое давление и тургор в клетке. Буферные системы клетки.

Химический состав клетки. Углеводы. Липиды. Углеводы в жизнедеятельности растений, животных, грибов и бактерий. Биополимеры - полисахариды, строение и биологическая роль. Жиры и липиды, особенности их строения, связанные с функциональной активностью клетки.

Химический состав клетки. Белки. Биополимеры — белки. Денатурация и ренатурация — биологический смысл и значение. Ферменты, их роль в обеспечении процессов жизнедеятельности.

Химический состав клетки. Нуклеиновые кислоты. Нуклеиновые кислоты, их роль в клетке. Структурная организация ДНК. Самоудвоение ДНК. РНК, ее виды, особенности строения и функционирования $AT\Phi$ — основной аккумулятор энергии в клетке

Раздел 2. Решение задач по теме «Цитология». 6 часов

Решение задач по теме «Строение клетки и ее органоиды. Энергетический и пластический обмен.»

Цитология как наука. История развития цитология. Теоретическое и практическое значение цитологических исследований в медицине, здравоохранении, сельском хозяйстве, деле охраны природы и других сферах человеческой деятельности. Клеточная теория. Современная клеточная теория, ее основные положения и значение для развития биологии.

Строение клетки и её органоиды. Плазматическая мембрана и оболочка клетки. Виды транспорта веществ через цитоплазматическую мембрану клеток (пассивный и активный транспорт, экзоцитоз и эндоцитоз). Ядро

интерфазной клетки. Хромосомы, постоянство числа и формы, тонкое строение. Понятие о кариотипе. Гаплоидный и диплоидный наборы хромосом. Аппарат Гольджи. Строение и функции лизосом. Особенности строения агранулярной (гладкой) и гранулярной (шероховатой) ЭПС. Рибосомы, особенности строения и роль в биосинтезе белка. Полирибосомы. Вакуоли растительных клеток, их значение, связь с ЭПС. Пластиды: лейкопласты, хлоропласты, хромопласты. Митохондрии, строение (наружная и внутренняя мембраны, кристы). Гипотезы о происхождении митохондрий. Значение возникновения кислородного дыхания в эволюции. Клеточный центр, его строение и функции.

Фотосинтез. Световая и темновая фазы фотосинтеза, основные процессы, происходящие в эти фазы. Основные итоги световой фазы - синтез АТФ, выделение кислорода. Фотофосфорилирование. Суммарное уравнение фотосинтеза. Первичные продукты фотосинтеза. Хемосинтез и его значение в природе.

Энергетический обмен. Этапы энергетического обмена, приуроченность этих процессов к определенным структурам клетки. Значение митохондрий и АТФ в энергетическом обмене.

Биосинтез белка. Генетический код и его свойства. Этапы биосинтеза белка. Реакции матричного синтеза. Регуляция синтеза белков. Ген-регулятор, геноператор, структурные гены, их взаимодействие. Принцип обратной связи в регуляции функционирования генов. Современные представления о природе генов.

Раздел 3. Решение задач по теме «Генетика» - 5 часов.

Независимое наследование признаков

Наследование при моногибридном скрещивании. Доминантные и рецессивные признаки. Цитологические основы расщепления при моногибридном скрещивании. Статистический характер расщепления.

Расщепление при возвратном и анализирующем скрещивании.

Наследование при дигибридном скрещивании. Независимое комбинирование независимых пар признаков - третий закон Менделя. Цитологические основы независимого комбинирования пар признаков.

Взаимодействие аллельных и неаллельных генов. Наследование при взаимодействии аллельных генов. Кодомнирование. Сверхдоминирование. Множественный аллелизм.

Взаимодействие неаллельных генов. Комплиментарность. Эпистаз. Полимерия. Множественное действие генов. Генотип как целостная исторически сложившаяся система.

Хромосомная теория наследственности. Явление сцепленного наследования и ограниченность третьего закона Менделя. Значение работ Т.Г.Моргана и его школы в изучении явления сцепленного наследования. *Генетика пола*. Первичные и вторичные половые признаки. Хромосомная теория определения пола. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом.

Закономерности изменчивости. Фенотипическая (модификационная и онтогенетическая) изменчивость. Норма реакции и ее зависимость от генотипа. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая.

Генотипическая (комбинативная и мутационная) изменчивость. Мутационная изменчивость, ее виды. Мутации, их причины.

Генетика человека. Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический, гибридизация соматических клеток.

Наследственные болезни, их распространение в популяциях человека. Меры профилактики наследственных заболеваний человека. Вредное влияние алкоголя, никотина и наркотических веществ на наследственность человека. Медико-генетическое консультирование.

Тематическое планирование

No	Наименование разделов и тем	Всего часов
1.	Введение.	2
2	Раздел 1. Молекулярная биология	3
3	Раздел 2. Решение задач по теме:	6
	«Цитология».	
4	Раздел 3 Решение задач по теме:	5
	«Генетика»	
5.	Итоговая контрольная работа	1
6	Резервное время	1
	Итого:	18